Alt text
  • cccc R Package
  • Functions
  • Download
  • Use Cases
  • Projects
  • References
  • About Us

On this page

  • 📥 Data Import & Preprocessing
  • 📊 Exploratory Visualization
  • 📈 Temporal Modeling & Smoothing
  • 📉 Trajectory Visualization
  • 📖 Quick Reference Guide
    • Typical Workflow
    • Function Categories Summary
  • 🔍 Need Help?

Function Reference

The cccc package provides a comprehensive set of functions organized around the four-stage analytical pipeline. Below, functions are grouped by their primary purpose to help you navigate the workflow more effectively.


📥 Data Import & Preprocessing

Functions for importing, validating, and preparing your corpus data.

Function Description
importData() Imports and validates corpus data and metadata into a standardized structure for analysis.
normalization() Normalizes the term-document matrix using various schemes (nc, nchi, nM, nmM, nnl).

📊 Exploratory Visualization

Functions for initial exploration and visualization of corpus characteristics.

Function Description
rowMassPlot() Creates a bar plot of keywords ordered by total frequency and colored by frequency zone.
colMassPlot() Plots the temporal dimensions of a corpus, showing distribution across time periods.

📈 Temporal Modeling & Smoothing

Functions for modeling keyword trajectories and selecting optimal smoothing parameters.

Function Description
smoothingSelection() Selects optimal smoothing parameters for chronological keyword curves using cross-validation.
optimalSmoothing() Selects the optimal spline degree and penalization strategy for trajectory smoothing.
plotSuboptimalFits() Plots suboptimal smoothed curves for selected keywords to compare different smoothing approaches.

📉 Trajectory Visualization

Functions for visualizing temporal curves and frequency patterns.

Function Description
curvePlot() Plots temporal curves of keyword frequencies over time periods.
curveCtuPlot() Plots temporal curves for frequency zones with example keywords highlighted.
facetPlot() Creates faceted plots of keyword frequency curves for comparative visualization.

📖 Quick Reference Guide

Typical Workflow

  1. Import your data → importData()
  2. Explore the corpus → rowMassPlot(), colMassPlot()
  3. Normalize frequencies → normalization()
  4. Visualize trajectories → curvePlot(), curveCtuPlot(), facetPlot()
  5. Select smoothing parameters → smoothingSelection(), optimalSmoothing()
  6. Compare fits → plotSuboptimalFits()

Function Categories Summary

Category Number of Functions Purpose
Data Import & Preprocessing 2 Prepare and normalize data
Exploratory Visualization 2 Initial corpus exploration
Temporal Modeling 3 Optimize smoothing parameters
Trajectory Visualization 3 Visualize temporal patterns

🔍 Need Help?

  • Click on any function name to see detailed documentation
  • Visit the Use Cases page for practical examples
  • Check out Projects to see cccc in action
  • Contact us via the About Us page for support and collaboration opportunities
 

© 2025 The cccc Team | Developed within the RIND Project